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NOTE 

Transport Equations with Quadratic Nonlinearities 

GEORGE H. WEISS 
PHYSICAL SCIENCES LABORATORY 
DIVISION OF COMPUTER RESEARCH AND TECHNOLOGY 

BETHESDA, MARYLAND 20014 

Abstract 

Two papers have recently appeared with approximate analysis of transport 
equations with quadratic nonlinearities. These equations can generally be 
solved exactly by means of a linearizing transformation, although there are 
exceptions that depend on the type of boundary conditions. 

Two papers have recently appeared in literature of separation science 
that deal with the solution of a nonlinear transport equation (1,2). In 
both of these a lengthy approximate solution was used that is valid only 
over a part of the range in which the equations themselves are valid. 
In this note we show that the equations in both Refs. 1 and 2 can be 
solved exactly and give some indication of the types of equations that 
can be solved by these techniques. We also note that severa1,applications 
of the linearizing transformation have been made in earlier investigations 
of separation processes (3-8). 

The prototype of a linear one dimensional transport equation is 

in which D has the dimensions of a diffusion constant and v has the 
dimensions of velocity. If one simply changes the dependent variable in 
Eq. (1) by setting c = f(u), then one finds that it satisfies 

(2) 
au d2u au dlnf'(u) au 
at ax ax du (%) -=  DT - V -  4- D 

243 
Copyright 0 1979 by Marcel Dekker, Inc. All Rights Reserved. Neither this work nor 
any part may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, including photocopying, microfilming, and recording, or by any informa- 
tion storage and retrieval system, without permission in writing from the publisher. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



244 WElSS 

wheref’(u) = dfldu. In a recent investigation of stop-flow sample injection 
in HPLC and GPC, Kubin and Vozka ( I )  derived an equation similar 
to Eq. (2) with u = 0 and 

d Inf’(u) 
du 

= BD = constant (3) 

But this ordinary differential equation is easily solved, allowing us to write 

f ( 4  = exp (P.) (4) 
Hence if one sets 

1 
u = - I n c  Ir 

the nonlinear equation given by Kubin and Vozka can reduce exactly to 
the linear heat equation and standard methods of solution can be applied. 
Notice that even when the coefficient of the nonlinear term in Eq. (2) 
is a complicated function of u, it is still simpler to solve 

numerically followed by a solution of a linear partial differential equation 
than it is to solve the full nonlinear partial differential equation numeri- 
cally. 

A second form of nonlinear transport equation that can be solved by 
essentially the same technique is exemplified by the equation for separation 
in a cascade as recently studied by Wieck and Ishida (2),  using an approxi- 
mate theory described by Cohen (9). In these equations one starts from a 
transport equation of the form 

1 - = -(D- - ac(c, - c) 
ac a ac 
at ax ax (7) 

in which the nonlinearity also occurs as a quadratic and a is a constant. 
If one makes the substitution 

where $ is a new independent variable, then $ satisfies 

_ -  a* a2* a* 
at ax ax 
- D? - aco- (9) 
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which is linear. Montroll and Newel1 have solved several cascade problems 
using this technique (4) .  It should be noted that although the underlying 
transport equations in Eqs. (2) and (7) can be linearized exactly, the 
boundary conditions may assume a more complicated form. It is easily 
verified that boundary conditions in which u (in Eq. 2) or c (in Eq. 7) 
are constant at  given points lead to no difficulties nor do boundary 
conditions for which the gradient vanishes. For Eq. (7) the boundary 
condition corresponding to zero flux at a point 

ac 
ax D -  = ac(c, - c )  

is also linearized by the transformation of Eq. (8). However, the general 
radiation condition 

ac 
ax 
- + $ c = O  

can lead to nonlinearities in the boundary conditions which may be as 
difficult to handle as the original equation. 

As a final example we note that the flow through polymer gels is often 
modeled by using Darcy’s law (10). If u is the velocity of the mobile phase, 
P the pressure, p the density, and F a constant term due to whatever 
force provides convection, then Darcy’s law provides the relationship 

ap 
u = - k -  ax + kpF 

where k is a constant. This relation is found to hold at sufficiently slow 
rates of flow, This equation, together with a continuity equation, leads 
to an equation of the form 

where p o  is the gel porosity. In order to find a single equation for p we 
must provide a constitutive relation between P and p. This is often taken 
to be 

P = Po exp [P(P - Po11 (14) 

where po and Po are reference values and p is the compressibility. When 
this last relation is assumed to hold, the density equation becomes 
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which is seen to be of the form of Eq. (7) and can be reduced to linear form 
by using Eq. (8) .  
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