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Transport Equations with Quadratic Nonlinearities

GEORGE H. WEISS

PHYSICAL SCIENCES LABORATORY
DIVISION OF COMPUTER RESEARCH AND TECHNOLOGY
BETHESDA, MARYLAND 20014

Abstract

Two papers have recently appeared with approximate analysis of transport
equations with quadratic nonlinearities. These equations can generally be
solved exactly by means of a linearizing transformation, although there are
exceptions that depend on the type of boundary conditions,

Two papers have recently appeared in literature of separation science
that deal with the solution of a nonlinear transport equation (/, 2). In
both of these a lengthy approximate solution was used that is valid only
over a part of the range in which the equations themselves are valid.
In this note we show that the equations in both Refs. / and 2 can be
solved exactly and give some indication of the types of equations that
can be solved by these techniques. We also note that several applications
of the linearizing transformation have been made in earlier mvestxgatmns
of separation processes (3-8).

The prototype of a linear one dimensional transport equation is

dc ¢ dc

=P Ve M

in which D has the dimensions of a diffusion constant and v has the

dimensions of velocity. If one simply changes the dependent variable in
Eq. (1) by setting ¢ = f(u), then one finds that it satisfies

ou u  ou dInf'(u) <_8£> 2
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where f'(u) = df]du. In a recent investigation of stop-flow sample injection
in HPLC and GPC, Kubin and Vozka (/) derived an equation similar
to Eq. (2) with v = 0 and

JRLYAO

e BD = constant 3

But this ordinary differential equation is easily solved, allowing us to write

Sf(w) = exp (Bu) 4)
Hence if one sets
U= % Inc (5)

the nonlinear equation given by Kubin and Vozka can reduce exactly to
the linear heat equation and standard methods of solution can be applied.
Notice that even when the coefficient of the nonlinear term in Eq. (2)
is a complicated function of u, it is still simpler to solve

d? d
oL = L ©

numerically followed by a solution of a linear partial differential equation
than it is to solve the full nonlinear partial differential equation numeri-
cally.

A second form of nonlinear transport equation that can be solved by
essentially the same technique is exemplified by the equation for separation
in a cascade as recently studied by Wieck and Ishida (2), using an approxi-
mate theory described by Cohen (9). In these equations one starts from a
transport equation of the form

de 0 dc
Erie 5;<Da~—-x — ac(cy — c)) )

in which the nonlinearity also occurs as a quadratic and ¢ is a constant.
If one makes the substitution

D1 oy
C=Lyox ®
where i is a new independent variable, then ¥ satisfies
o _ Y oy
Et_ = Dé? - acoa (9)
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which is linear. Montroll and Newell have solved several cascade problems
using this technique (4). It should be noted that although the underlying
transport equations in Eqs. (2) and (7) can be linearized exactly, the
boundary conditions may assume a more complicated form. It is easily
verified that boundary conditions in which # (in Eq. 2) or ¢ (in Eq. 7)
are constant at given points lead to no difficulties nor do boundary
conditions for which the gradient vanishes. For Eq. (7) the boundary
condition corresponding to zero flux at a point

dc
Da = ac{cy — ¢) (10)

is also linearized by the transformation of Eq. (8). However, the general
radiation condition
oc

=+ he=0 1)

can lead to nonlinearities in the boundary conditions which may be as
difficult to handle as the original equation.

As a final example we note that the flow through polymer gels is often
modeled by using Darcy’s law (10). If v is the velocity of the mobile phase,
P the pressure, p the density, and F a constant term due to whatever
force provides convection, then Darcy’s law provides the relationship

opP
v = _ké; + kpF (12)

where k is a constant. This relation is found to hold at sufficiently slow
rates of flow. This equation, together with a continuity equation, leads
to an equation of the form

% 21 k(2 -
w2 (2 - or)] w

where p, is the gel porosity. In order to find a single equation for p we
must provide a constitutive relation between P and p. This is often taken
to be

p = po exp [B(P — Py)] 14

where p, and P, are reference values and § is the compressibility. When
this last relation is assumed to hold, the density equation becomes

9 _ 0. (% _ »
Pogs = ax[k(ax p F)] (13
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which is seen to be of the form of Eq. (7) and can be reduced to linear form
by using Eq. (8).
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